Representations of Dynamical Systems

Yonatan Gutman

Institute of Mathematics
Polish Academy of Sciences
(IM PAN)
www.impan.pl/~gutman/
Warsaw Doctoral School of Mathematics and Computer Science Open Day of Doctoral Studies in Mathematics

ONLINE

May 22nd, 2021

The Lorenz attractor

$$
\begin{cases}\dot{x} & =10(y-x) \\ \dot{y} & =28 x-y-x z \\ \dot{z} & =x y-\frac{8}{3} z\end{cases}
$$

Experimental reconstruction of a system

Source: Timothy D. Sauer (2006) Attractor reconstruction. Scholarpedia, 1(10):1727.

2D Navier-Stokes flow

Source: G.H. Keetels, H.J.H. Clercx, G.J.F. van Heijst, Fourier spectral solver for the incompressible Navier-Stokes equations with volume penalization, Proceedings of the 7th International Conference on Computational Science, Beijing, China, 2007; 898-905.

d-cubical shifts

Let $d \in \mathbb{N}$. Denote:

$$
X=\left([0,1]^{d}\right)^{\mathbb{Z}}
$$

with product topology. Let $T: X \rightarrow$ be the shift homeomorphism:

$$
\left(\ldots, x_{-2}, x_{-1}, x_{0}, x_{1}, x_{2}, \ldots\right)
$$

$\left(\left([0,1]^{d}\right)^{\mathbb{Z}}\right.$, shift) is referred to as the full topological shift on the alphabet $[0,1]^{d}$ or simply as the d-cubical shift.

d-cubical shifts

Let $d \in \mathbb{N}$. Denote:

$$
X=\left([0,1]^{d}\right)^{\mathbb{Z}}
$$

with product topology. Let $T: X \rightarrow$ be the shift homeomorphism:

$\left(\left([0,1]^{d}\right)^{\mathbb{Z}}\right.$, shift) is referred to as the full topological shift on the alphabet $[0,1]^{d}$ or simply as the d-cubical shift.

d-cubical shifts

Let $d \in \mathbb{N}$. Denote:

$$
X=\left([0,1]^{d}\right)^{\mathbb{Z}}
$$

with product topology. Let $T: X \rightarrow$ be the shift homeomorphism:

$$
\begin{gathered}
\left(\ldots, x_{-2}, x_{-1}, x_{0}, x_{1}, x_{2}, \ldots\right) \\
\downarrow \\
\left(\ldots, x_{-1}, x_{0}, x_{1}, x_{2}, x_{3}, \ldots\right)
\end{gathered}
$$

$\left(\left([0,1]^{d}\right)^{\mathbb{Z}}\right.$, shift) is referred to as the full topological shift on the alphabet $[0,1]^{d}$ or simply as the d-cubical shift.

d-cubical shifts

Let $d \in \mathbb{N}$. Denote:

$$
X=\left([0,1]^{d}\right)^{\mathbb{Z}}
$$

with product topology. Let $T: X \rightarrow$ be the shift homeomorphism:

$$
\begin{gathered}
\left(\ldots, x_{-2}, x_{-1}, x_{0}, x_{1}, x_{2}, \ldots\right) \\
\downarrow \\
\left(\ldots, x_{-1}, x_{0}, x_{1}, x_{2}, x_{3}, \ldots\right)
\end{gathered}
$$

$\left(\left([0,1]^{d}\right)^{\mathbb{Z}}\right.$, shift) is referred to as the full topological shift on the alphabet $[0,1]^{d}$ or simply as the d-cubical shift.

Embedding dimension

- For any compact metrizable space X there is a (topological) embedding into the Hilbert cube: $\phi: X \hookrightarrow[0,1]^{\mathbb{N}}$.
- Let (X, T) be a t.d.s. There is a (dynamical) embedding by the orbit-map:

$$
\begin{aligned}
\Phi:(X, T) & \mapsto\left(\left([0,1]^{\mathbb{N}}\right)^{\mathbb{Z}}, \text { shift }\right) \\
x & \mapsto\left(\phi\left(T^{k} x\right)\right)_{k \in \mathbb{Z}}
\end{aligned}
$$

- Under which conditions is there an embedding into the d-cubical shift:

$$
(X, T) \rightarrow\left(\left([0,1]^{d}\right) \mathbb{Z} \text {, shift }\right)(d \in \mathbb{N}) ?
$$

- Define the embedding dimension:

$$
\operatorname{edim}(X, T)=\min \left\{d \in \mathbb{N} \cup\{\infty\} \mid(X, T) \hookrightarrow\left(\left([0,1]^{d}\right)^{\mathbb{Z}}, \text { shift }\right)\right\}
$$

Embedding dimension

- For any compact metrizable space X there is a (topological) embedding into the Hilbert cube: $\phi: X \rightarrow[0,1]^{\mathbb{N}}$.
- Let (X, T) be a t.d.s. There is a (dynamical) embedding by the orbit-map:

- Under which conditions is there an embedding into the d-cubical shift:

$$
(X, T) \cdots\left(\left([0,1]^{d}\right) \mathbb{Z} \text {, shift }\right)(d \in \mathbb{N}) ?
$$

- Define the embedding dimension:

$$
\operatorname{edim}(X, T)=\min \left\{d \in \mathbb{N} \cup\{\infty\} \mid(X, T) \hookrightarrow\left(\left([0,1]^{d}\right)^{\mathbb{Z}}, \text { shift }\right)\right\}
$$

Embedding dimension

- For any compact metrizable space X there is a (topological) embedding into the Hilbert cube: $\phi: X \rightarrow[0,1]^{\mathbb{N}}$.
- Let (X, T) be a t.d.s. There is a (dynamical) embedding by the orbit-map:

$$
\begin{aligned}
\Phi:(X, T) & \rightarrow\left(\left([0,1]^{\mathbb{N}}\right)^{\mathbb{Z}}, \text { shift }\right) \\
x & \mapsto\left(\phi\left(T^{k} x\right)\right)_{k \in \mathbb{Z}}
\end{aligned}
$$

- Under which conditions is there an embedding into the d-cubical shift:

$$
(X, T) \leftrightarrow\left(\left([0,1]^{d}\right)^{\mathbb{Z}} \text { shift }\right)(d \in \mathbb{N}) ?
$$

- Define the embedding dimension:

Embedding dimension

- For any compact metrizable space X there is a (topological) embedding into the Hilbert cube: $\phi: X \rightarrow[0,1]^{\mathbb{N}}$.
- Let (X, T) be a t.d.s. There is a (dynamical) embedding by the orbit-map:

$$
\begin{aligned}
\Phi:(X, T) & \rightarrow\left(\left([0,1]^{\mathbb{N}}\right)^{\mathbb{Z}}, \text { shift }\right) \\
x & \mapsto\left(\phi\left(T^{k} x\right)\right)_{k \in \mathbb{Z}}
\end{aligned}
$$

- Under which conditions is there an embedding into the d-cubical shift:

$$
(X, T) \leftrightarrow\left(\left([0,1]^{d}\right)^{\mathbb{Z}}, \text { shift }\right)(d \in \mathbb{N}) ?
$$

- Define the embedding dimension:

$$
\operatorname{edim}(X, T)=\min \left\{d \in \mathbb{N} \cup\{\infty\} \mid(X, T) \hookrightarrow\left(\left([0,1]^{d}\right)^{\mathbb{Z}}, \text { shift }\right)\right\}
$$

Embedding dimension

- For any compact metrizable space X there is a (topological) embedding into the Hilbert cube: $\phi: X \rightarrow[0,1]^{\mathbb{N}}$.
- Let (X, T) be a t.d.s. There is a (dynamical) embedding by the orbit-map:

$$
\begin{aligned}
\Phi:(X, T) & \rightarrow\left(\left([0,1]^{\mathbb{N}}\right)^{\mathbb{Z}}, \text { shift }\right) \\
x & \mapsto\left(\phi\left(T^{k} x\right)\right)_{k \in \mathbb{Z}}
\end{aligned}
$$

- Under which conditions is there an embedding into the d-cubical shift:

$$
(X, T) \rightarrow\left(\left([0,1]^{d}\right)^{\mathbb{Z}}, \text { shift }\right)(d \in \mathbb{N}) ?
$$

- Define the embedding dimension:

$$
\operatorname{edim}(X, T)=\min \left\{d \in \mathbb{N} \cup\{\infty\} \mid(X, T) \rightarrow\left(\left([0,1]^{d}\right)^{\mathbb{Z}}, \text { shift }\right)\right\}
$$

The Lindenstrauss-Tsukamoto Conjecture

Conjecture (Lindenstrauss-Tsukamoto, 2014)

Let $d \in \mathbb{N}$ be such that


```
then }(X,T)\leftrightarrow(([0,1\mp@subsup{]}{}{d}\mp@subsup{)}{}{\mathbb{Z}}\mathrm{ , shift ).
```


The Lindenstrauss-Tsukamoto Conjecture

Conjecture (Lindenstrauss-Tsukamoto, 2014)

Let $d \in \mathbb{N}$ be such that

$$
\begin{aligned}
& \operatorname{perdim}(X, T)<\frac{d}{2} \\
& \operatorname{mdim}(X, T)<\frac{d}{2}
\end{aligned}
$$

then $(X, T) \leftrightarrow\left(\left([0,1]^{d}\right)^{\mathbb{Z}}\right.$, shift $)$.

Mean dimension (metric definition)

- Let $f: X \rightarrow Y$ be a continuous map and $\varepsilon>0$. The map f is called an ε-embedding if $\operatorname{diam} f^{-1}(y)<\varepsilon$ for all $y \in Y$.
- Let $\operatorname{widim}_{\varepsilon}(X, d)$ be the minimum integer $n \geq 0$ such that there exist an n-dimensional simplicial complex P and an ε-embedding $f: X \rightarrow P$.
- $\operatorname{dim}(X)=\lim _{\epsilon \rightarrow 0} \operatorname{widim}_{\epsilon}(X, d)$
- $d_{n}(x, y)=\max _{0 \leq i \leq n-1} d\left(T^{i} x, T^{i} y\right)$
- (Gromov) $\quad \operatorname{mdim}(X, T)=\lim _{\epsilon \rightarrow 0} \lim _{n \rightarrow \infty} \frac{\operatorname{widim}_{\epsilon}\left(X, d_{n}\right)}{n}$

Mean dimension (metric definition)

- Let $f: X \rightarrow Y$ be a continuous map and $\varepsilon>0$. The map f is called an ε-embedding if $\operatorname{diam} f^{-1}(y)<\varepsilon$ for all $y \in Y$.
- Let $\operatorname{widim}_{\varepsilon}(X, d)$ be the minimum integer $n \geq 0$ such that there exist an n-dimensional simplicial complex P and an ε-embedding $f: X \rightarrow P$.
- $\operatorname{dim}(X)=\lim _{\epsilon \rightarrow 0} \operatorname{widim}_{\epsilon}(X, d)$
- $d_{n}(x, y)=\max _{0 \leq i \leq n-1} d\left(T^{i} x, T^{i} y\right)$
- (Gromov) $\operatorname{mdim}(X, T)=\lim _{\epsilon \rightarrow 0} \lim _{n \rightarrow \infty} \frac{\text { widim }_{e}\left(X, d_{n}\right)}{n}$

Mean dimension (metric definition)

- Let $f: X \rightarrow Y$ be a continuous map and $\varepsilon>0$. The map f is called an ε-embedding if $\operatorname{diam} f^{-1}(y)<\varepsilon$ for all $y \in Y$.
- Let $\operatorname{widim}_{\varepsilon}(X, d)$ be the minimum integer $n \geq 0$ such that there exist an n-dimensional simplicial complex P and an ε-embedding $f: X \rightarrow P$.
- $\operatorname{dim}(X)=\lim _{\epsilon \rightarrow 0} \operatorname{widim}_{\epsilon}(X, d)$
- $d_{n}(x, y)=\max _{0 \leq i \leq n-1} d\left(T^{i} x, T^{i} y\right)$
- (Gromov) $\operatorname{mdim}(X, T)=\lim _{c \rightarrow 0} \lim _{n \rightarrow \infty} \frac{\text { widim }_{c}\left(X, d_{n}\right)}{n}$

Mean dimension (metric definition)

- Let $f: X \rightarrow Y$ be a continuous map and $\varepsilon>0$. The map f is called an ε-embedding if $\operatorname{diam} f^{-1}(y)<\varepsilon$ for all $y \in Y$.
- Let $\operatorname{widim}_{\varepsilon}(X, d)$ be the minimum integer $n \geq 0$ such that there exist an n-dimensional simplicial complex P and an ε-embedding $f: X \rightarrow P$.
- $\operatorname{dim}(X)=\lim _{\epsilon \rightarrow 0} \operatorname{widim}_{\epsilon}(X, d)$
- $d_{n}(x, y)=\max _{0 \leq i \leq n-1} d\left(T^{i} x, T^{i} y\right)$
- (Gromov) $\operatorname{mdim}(X, T)=\lim _{c \rightarrow 0} \lim _{n \rightarrow \infty} \frac{\operatorname{widim}_{c}\left(X, d_{n}\right)}{n}$

Mean dimension (metric definition)

- Let $f: X \rightarrow Y$ be a continuous map and $\varepsilon>0$. The map f is called an ε-embedding if $\operatorname{diam} f^{-1}(y)<\varepsilon$ for all $y \in Y$.
- Let $\operatorname{widim}_{\varepsilon}(X, d)$ be the minimum integer $n \geq 0$ such that there exist an n-dimensional simplicial complex P and an ε-embedding $f: X \rightarrow P$.
- $\operatorname{dim}(X)=\lim _{\epsilon \rightarrow 0} \operatorname{widim}_{\epsilon}(X, d)$
- $d_{n}(x, y)=\max _{0 \leq i \leq n-1} d\left(T^{i} x, T^{i} y\right)$
- (Gromov) mdim $(X, T)=\lim _{\epsilon \rightarrow 0} \lim _{n \rightarrow \infty} \frac{\operatorname{widim}_{\epsilon}\left(X, d_{n}\right)}{n}$

Mean dimension (metric definition)

- Let $f: X \rightarrow Y$ be a continuous map and $\varepsilon>0$. The map f is called an ε-embedding if $\operatorname{diam} f^{-1}(y)<\varepsilon$ for all $y \in Y$.
- Let $\operatorname{widim}_{\varepsilon}(X, d)$ be the minimum integer $n \geq 0$ such that there exist an n-dimensional simplicial complex P and an ε-embedding $f: X \rightarrow P$.
- $\operatorname{dim}(X)=\lim _{\epsilon \rightarrow 0} \operatorname{widim}_{\epsilon}(X, d)$
- $d_{n}(x, y)=\max _{0 \leq i \leq n-1} d\left(T^{i} x, T^{i} y\right)$
- (Gromov) $\quad \operatorname{mdim}(X, T)=\lim _{\epsilon \rightarrow 0} \lim _{n \rightarrow \infty} \frac{\operatorname{widim}_{\epsilon}\left(X, d_{n}\right)}{n}$

Periodic dimension obstruction for embedding

 period $\leq n$ of X. Define:

$$
\operatorname{perdim}(X, T)=\left(\frac{\operatorname{dim}\left(P_{1}\right)}{1}, \frac{\operatorname{dim}\left(P_{2}\right)}{2}, \ldots\right)
$$

Notation: $d \geq \operatorname{perdim}(X, T)$ if for every $m \in \mathbb{N}, d \geq\left.\operatorname{perdim}(X, T)\right|_{m}$ - $\operatorname{perdim}\left(\left([0,1]^{d}\right)^{\mathbb{Z}}\right.$, shift $)=(d, d, \ldots)$ - $\operatorname{edim}(X, T) \geq \operatorname{perdim}(X, T)$

Periodic dimension obstruction for embedding

Let $P_{n}=\left\{x \in X \mid \exists 1 \leq m \leq n T^{m} x=x\right\}$, be the set of periodic points of period $\leq n$ of X. Define:

Notation: $d \geq \operatorname{perdim}(X, T)$ if for every $m \in \mathbb{N}, d \geq\left.\operatorname{perdim}(X, T)\right|_{m}$ - $\operatorname{perdim}\left(\left([0,1]^{d}\right)^{\mathbb{Z}}\right.$, shift $)=(d, d, \ldots)$ - $\operatorname{edim}(X, T) \geq \operatorname{perdim}(X, T)$

Periodic dimension obstruction for embedding

Let $P_{n}=\left\{x \in X \mid \exists 1 \leq m \leq n T^{m} x=x\right\}$, be the set of periodic points of period $\leq n$ of X. Define:

$$
\operatorname{perdim}(X, T)=\left(\frac{\operatorname{dim}\left(P_{1}\right)}{1}, \frac{\operatorname{dim}\left(P_{2}\right)}{2}, \ldots\right)
$$

Notation: $d \geq \operatorname{perdim}(X, T)$ if for every $m \in \mathbb{N}, d \geq\left.\operatorname{perdim}(X, T)\right|_{m}$ - $\operatorname{perdim}\left(\left([0,1]^{d}\right)^{\mathbb{Z}}\right.$, shift $)=(d, d, \ldots)$

- $\operatorname{edim}(X, T) \geq \operatorname{perdim}(X, T)$

Periodic dimension obstruction for embedding

Let $P_{n}=\left\{x \in X \mid \exists 1 \leq m \leq n T^{m} x=x\right\}$, be the set of periodic points of period $\leq n$ of X. Define:

$$
\operatorname{perdim}(X, T)=\left(\frac{\operatorname{dim}\left(P_{1}\right)}{1}, \frac{\operatorname{dim}\left(P_{2}\right)}{2}, \ldots\right)
$$

Notation: $d \geq \operatorname{perdim}(X, T)$ if for every $m \in \mathbb{N}, d \geq\left.\operatorname{perdim}(X, T)\right|_{m}$

Periodic dimension obstruction for embedding

Let $P_{n}=\left\{x \in X \mid \exists 1 \leq m \leq n T^{m} x=x\right\}$, be the set of periodic points of period $\leq n$ of X. Define:

$$
\operatorname{perdim}(X, T)=\left(\frac{\operatorname{dim}\left(P_{1}\right)}{1}, \frac{\operatorname{dim}\left(P_{2}\right)}{2}, \ldots\right)
$$

Notation: $d \geq \operatorname{perdim}(X, T)$ if for every $m \in \mathbb{N}, d \geq\left.\operatorname{perdim}(X, T)\right|_{m}$

- $\operatorname{perdim}\left(\left([0,1]^{d}\right)^{\mathbb{Z}}\right.$, shift $)=(d, d, \ldots)$
- $\operatorname{edim}(X, T) \geq \operatorname{perdim}(X, T)$

Periodic dimension obstruction for embedding

Let $P_{n}=\left\{x \in X \mid \exists 1 \leq m \leq n T^{m} x=x\right\}$, be the set of periodic points of period $\leq n$ of X. Define:

$$
\operatorname{perdim}(X, T)=\left(\frac{\operatorname{dim}\left(P_{1}\right)}{1}, \frac{\operatorname{dim}\left(P_{2}\right)}{2}, \ldots\right)
$$

Notation: $d \geq \operatorname{perdim}(X, T)$ if for every $m \in \mathbb{N}, d \geq\left.\operatorname{perdim}(X, T)\right|_{m}$

- $\operatorname{perdim}\left(\left([0,1]^{d}\right)^{\mathbb{Z}}\right.$, shift $)=(d, d, \ldots)$
- $\operatorname{edim}(X, T) \geq \operatorname{perdim}(X, T)$

Thank you!

Dziękuję bardzo!

