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The Lorenz attractor

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

ẋ = 10(y − x)

ẏ = 28x − y − xz

ż = xy − 8
3z
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Experimental reconstruction of a system

t ↦ (x(t), x(t −T ), x(t − 2T ))

Source: Timothy D. Sauer (2006) Attractor reconstruction. Scholarpedia,
1(10):1727.
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2D Navier-Stokes flow

Source: G.H. Keetels, H.J.H. Clercx, G.J.F. van Heijst, Fourier spectral
solver for the incompressible Navier-Stokes equations with volume
penalization, Proceedings of the 7th International Conference on
Computational Science, Beijing, China, 2007; 898-905.
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d -cubical shifts

Let d ∈ N. Denote:
X = ([0,1]d)Z

with product topology. Let T ∶ X → be the shift homeomorphism:

(. . . , x−2, x−1, x0, x1, x2, . . .)

↓

(. . . , x−1, x0, x1, x2, x3, . . .)

(([0,1]d)Z, shift) is referred to as the full topological shift on the
alphabet [0,1]d or simply as the d-cubical shift.
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Embedding dimension

For any compact metrizable space X there is a (topological)
embedding into the Hilbert cube: φ ∶ X ↪ [0,1]N.
Let (X ,T ) be a t.d.s. There is a (dynamical) embedding by the
orbit-map:

Φ ∶ (X ,T ) ↪ (([0,1]N)Z, shift)

x ↦ (φ(T kx))k∈Z

Under which conditions is there an embedding into the d-cubical shift:

(X ,T )↪ (([0,1]d)Z, shift) (d ∈ N)?

Define the embedding dimension:

edim(X ,T ) = min{d ∈ N ∪ {∞} ∣ (X ,T )↪ (([0,1]d)Z, shift)}
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The Lindenstrauss-Tsukamoto Conjecture

Conjecture (Lindenstrauss-Tsukamoto, 2014)
Let d ∈ N be such that

perdim(X ,T ) <
d

2

mdim(X ,T ) <
d

2

then (X ,T )↪ (([0,1]d)Z, shift).
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Mean dimension (metric definition)

Let f ∶ X → Y be a continuous map and ε > 0. The map f is called an
ε-embedding if diam f −1(y) < ε for all y ∈ Y .
Let widimε(X ,d) be the minimum integer n ≥ 0 such that there exist
an n-dimensional simplicial complex P and an ε-embedding f ∶ X → P .
dim(X ) = limε→0 widimε(X ,d)

dn(x , y) = max0≤i≤n−1 d(T
ix ,T iy)

(Gromov) mdim(X ,T ) = limε→0 limn→∞
widimε(X ,dn)

n
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Periodic dimension obstruction for embedding

Let Pn = {x ∈ X ∣ ∃1 ≤ m ≤ n Tmx = x}, be the set of periodic points of
period ≤ n of X . Define:

perdim(X ,T ) = (
dim(P1)

1
,

dim(P2)

2
, . . . )

Notation: d ≥ perdim(X ,T ) if for every m ∈ N, d ≥ perdim(X ,T )∣m

perdim(([0,1]d)Z, shift) = (d ,d , . . .)

edim(X ,T ) ≥ perdim(X ,T )
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Thank you!

Dziękuję bardzo!
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