22 May 2021

Wydział Matematyki, Informatyki i Mechaniki

OPERATOR ALGEBRAS
 THAT ONE CAN SEE - A FORETASTE OF NONCOMMUTATIVE TOPOLOGY

Piotr M. Hajac (Instytut Matematyczny PAN)

Winter Semester 2021/22 lecture course

What is a compact quantum space?

Theorem (Gelfand-Naimark)

Every C*-algebra is a complex algebra of continuous (i.e. bounded) linear operators on a complex Hilbert space that is:
(1) a topologically closed set in the norm topology of operators,
(2) closed under the operation of taking adjoints of operators.

Theorem (Gelfand-Naimark)

Every commutative C^{*}-algebra is naturally isomorphic to the algebra of all continuous complex-valued vanishing-at-infinity functions on a locally compact Hausdorff space.

Theorem

The category CH of compact Hausdorff spaces and the category CC* of unital commutative C^{*}-algebras are anti-equivalent via the contravariant functor

$$
C: C H \ni X \longmapsto C(X) \in C C^{*} .
$$

What is a noncommutative vector bundle?

Trivial

Non-trivial

Theorem (Serre-Swan)

The category CVB of complex vector bundles over compact Hausdorff spaces and the category FGP of finitely generated projective modules over unital commutative C^{*}-algebras are anti-equivalent via the contravariant functor

$$
C: C V B \ni(E \rightarrow X) \longmapsto C(E \rightarrow X) \in F G P .
$$

Graphs and their algebras

Definition

A graph (oriented graph, quiver) $E:=\left(E^{0}, E^{1}, s, t\right)$ is a quadruple consisting of the set of vertices E^{0}, the set of edges (arrows) E^{1}, and the source and target (range) maps $s, t: E^{1} \rightarrow E^{0}$ assigning to each edge its source and target vertex respectively.

Definition

Let E be a graph. The universal C^{*}-algebra $C^{*}(E)$ of the graph E is generated by mutually orthogonal projections $\left\{P_{v} \mid v \in E^{0}\right\}$ and partial isometries $\left\{S_{x} \mid x \in E^{1}\right\}$ satisfying the relations:
(1) $\forall x, y \in E^{1}: S_{x}^{*} S_{y}=\delta_{x y} P_{t(x)}$,
(2) $\forall v \in E^{0}$ such that the preimage $s^{-1}(v)$ is not empty and finite: $\sum_{x \in s^{-1}(v)} S_{x} S_{x}^{*}=P_{v}$,
(3) $\forall x \in E^{1}: S_{x} S_{x}^{*} \leqslant P_{S(x)}$.

Examples of pushouts

Quantum $\mathbb{C} P^{1}$

Quantum $\mathbb{C} P^{1}$ revisited

Quantum weighted complex projective line

