

Wydział Matematyki, Informatyki i Mechaniki

OPERATOR ALGEBRAS THAT ONE CAN SEE — A FORETASTE OF NONCOMMUTATIVE TOPOLOGY

Piotr M. Hajac (Instytut Matematyczny PAN)

Winter Semester 2021/22 lecture course

What is a compact quantum space?

Theorem (Gelfand-Naimark)

Every C*-algebra is a complex algebra of continuous (i.e. bounded) linear operators on a complex Hilbert space that is:

- I a topologically closed set in the norm topology of operators,
- ② closed under the operation of taking adjoints of operators.

Theorem (Gelfand-Naimark)

Every commutative C*-algebra is naturally isomorphic to the algebra of all continuous complex-valued vanishing-at-infinity functions on a locally compact Hausdorff space.

Theorem

The category CH of compact Hausdorff spaces and the category CC* of unital commutative C*-algebras are anti-equivalent via the contravariant functor

 $C\colon \mathcal{CH}\ni X\longmapsto C(X)\in \mathcal{CC}^*.$

What is a noncommutative vector bundle?

Theorem (Serre–Swan)

The category CVB of complex vector bundles over compact Hausdorff spaces and the category FGP of finitely generated projective modules over unital commutative C*-algebras are anti-equivalent via the contravariant functor

 $C\colon \mathsf{CVB}\ni (E\to X)\longmapsto C(E\to X)\in \mathsf{FGP}.$

Graphs and their algebras

Definition

A graph (oriented graph, quiver) $E := (E^0, E^1, s, t)$ is a quadruple consisting of the set of vertices E^0 , the set of edges (arrows) E^1 , and the source and target (range) maps $s, t: E^1 \to E^0$ assigning to each edge its source and target vertex respectively.

Definition

Let E be a graph. The universal C*-algebra $C^*(E)$ of the graph E is generated by mutually orthogonal projections $\{P_v \mid v \in E^0\}$ and partial isometries $\{S_x \mid x \in E^1\}$ satisfying the relations:

Examples of pushouts

Quantum $\mathbb{C}P^1$

Quantum $\mathbb{C}P^1$ revisited

A quantum bonus

Quantum weighted complex projective line

Quantum $\mathbb{C}P^2$

