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Riemann zeta function
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Bernoulli numbers

Jakob Bernoulli’s Barry Mazur’s sketch
”Summae Potestatum”, 1713 of the unity of mathematics, 2008
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Special values of the Riemann zeta function
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ζ(3) = 1.2020569031595942853997381615114499908 . . .

ζ(5) = 1.0369277551433699263313654864570341681 . . .

Theorem (Roger Apéry, 1979) ζ(3) 6∈ Q

Theorem (Wadim Zudilin, 2001) Among the numbers
ζ(5), ζ(7), ζ(9), ζ(11) at least one is irrational.

Conjecture (folklore) The numbers π, ζ(3), ζ(5), ζ(7), . . . are
algebraically independent over Q.
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Other functions like ζ(s): Hasse–Weil zeta functions
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Theorem (Dwork, 1960) The local zeta function ZX/Fp
(T ) is a

rational function of T .
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Zeta functions of algebraic varieties

Example 1: X = one point, #X (Fpm) = 1

ZX/Fp
(T ) = exp(

∑
m≥1

Tm

m ) = 1
1−T , ζX (s) =

∏
p prime

1
1−p−s

Example 2: X = elliptic curve

ZX/Fp
(T ) =

1− αpT + pT 2

(1− T )(1− pT )
, αp = p −#X (Fp)

Conjecture. ζX (s) can be analytically continued to a
meromorphic function of s in the whole C.

This is known only for very special classes of varieties. Orders of
poles and zeroes, and special values of ζX (s) should ”know” a lot
about geometry and arithmetic of X : Birch and Swinnerton–Dyer
conjecture, Beilinson–Deligne conjectures, Langlands program...
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What we know about local zeta functions
X = elliptic curve {y2 = x3 + ax + b}, ∆ := 4a3 + 27b2 6= 0

ZX/Fp
(T ) =

1− αpT + pT 2

(1− T )(1− pT )
for all p - ∆

αp = p −#{(x , y) ∈ F2
p : y2 = x3 + ax + b} for all p - ∆

Theorem (Helmut Hasse, 1933)
αp

2
√
p ∈ [−1, 1]

Theorem (former Sato–Tate conjecture: Clozel, Harris,
Shepherd-Barron, Taylor 2008, Barnet-Lamb, Geraghty, Harris,
Taylor 2011)
Numbers

αp

2
√
p =: cos(θp) are distributed in [−1, 1] according to the

law
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N→∞
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=
2

π

∫ t2

t1

sin2(θ)dθ.

*More precisely, this statement concerns elliptic curves without complex multiplication.
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Punchline: could there be a formula for αp?
Xt : y2 = x(x − 1)(x − t), t 6= 0, 1 parameter
αp(t) = p −#{(x , y) ∈ F2

p : y2 = x(x − 1)(x − t)}
I The elliptic integral
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π
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4 .

I For any p 6= 2 the truncation Fp(t) =
∑p−1

n=0
1

16n

(2n
n

)2
tn is a

solution to L modulo p, and

αp(t) ≡ Fp(t) mod p.

I The function λp(t) := F (t)
F (tp) admits a p-adic analytic

continuation to the set {t : Fp(t) 6≡ 0 mod p} and for such t
one has

αp(t) = λp(t) +
p

λp(t)
(Dwork, 1969).
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Deformation theory of local zeta functions, after Dwork

#{(x , y) ∈ F2
p : y2 = x(x − 1)(x − t)} = p − λp(t)− p

λp(t)

λp(t) =
F (t)

F (tp)
, F (t) =

∫ ∞
1

dx√
x(x − 1)(x − t)

What you see here is a glimpse of an explicit deformation theory
for zeta functions, which was anticipated by Bernard Dwork.
It relies on fine arithmetic properties of solutions of differential
equations arising from geometry, like F (t). Together with Frits
Beukers we started to explore and generalize these properties in a
recent series of papers, which we call ”Dwork crystals I, II, III”...
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